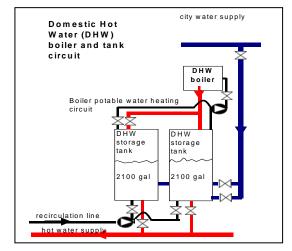


Instantaneous Water Heaters

Instantaneous Water Heaters (IWH)

IWH Application Case Study Handbook


Introduction

This handbook provides the reader with some Case Study comparisons between two approaches to domestic water heating in commercial spaces, Instantaneous Water Heaters (IWH), versus, storage tanks. The comparisons are made using published ASHRAE sizing and system design standards. The economic comparisons are based on lowest cost equipment scenarios and should not be taken to imply market pricing for these items.

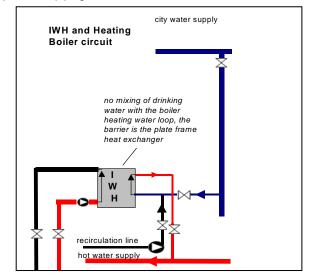
The objective of this handbook is to allow the reader to develop an understanding of what type of installations are ideal for IWH. In many scenarios IWH is the lowest first cost, has the lower operating cost, and is the easiest to maintain. There are however, certain situations where the traditional storage tank heater approach may offer the lowest first cost. Beyond first installed cost, the following introduction compares and contrasts some of the other facts and feature differences between IWH and storage tank systems.

In North American buildings the common approach to heating "domestic water" has involved a storage tank that has either a dedicated domestic water heating boiler, or an immersion heater in the storage tank.

ASHRAE provides designers with tank, boiler, and user flow demand calculation techniques for a wide variety of users (schools, apartments, hospitals, hotels, etc.)

The ASHRAE tank sizing calculations are developed based on historical experience and engineering calculations to provide the user with a time duration supply of hot water. The large tanks allow a smaller boiler to build up a reserve of heated water for periods of high demand. If the actual period of high demand exceeds the design estimates the user runs out of hot water.

Instantaneous water heaters, unlike hot water storage tank systems, are able to provide the user with an endless duration of hot water at the maximum design flow rate. Traditionally, storage tank capacity has been much less costly than boiler supply capacity, and has led to the widespread popularity of large sized tanks with smaller boiler sizing. IWH can offer peak

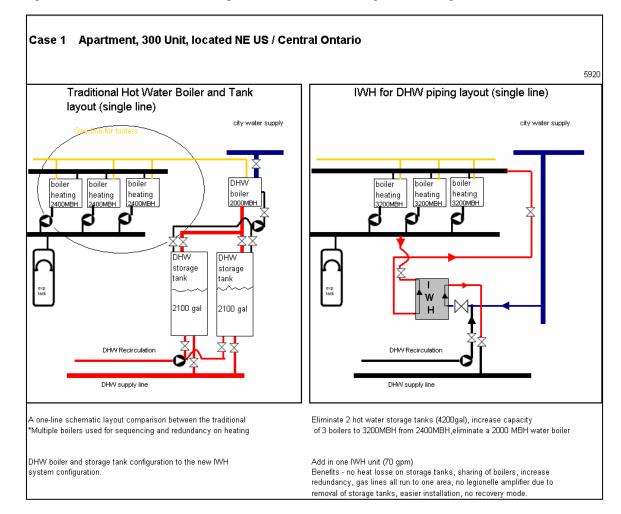

Instantaneous Water Heaters

flow demand with marginal to no increase in boiler capacity by drawing heat energy from the space heating boilers. In the case studies this concept of a "combined boiler" system is demonstrated.

Although a storage tank system can sometimes offer cost saving on the original equipment costs, a tank system usually has the following less attractive characteristics:

- storage tanks require a lot of space
- storage tanks can become an amplifier for legionaries disease
- storage tanks suffer radiant and convection heat loss
- storage tanks require continuous recirculation to the boiler

With IWH there is no mixing between the city supply of water and the boiler circuit / loop of water (separated by the heat exchanger plates), no heat losses from the tank, no risk of legionaries disease, and no time limit on the supply of full peak design flow. Also, the IWH system can use a lower cost heating boiler design rather than the more costly drinking water boiler design with copper-nickel piping.


The IWH first installed cost can be lower than the traditional storage tank system in the following situations:

- there is a building heating system in places and the building heat boilers can be sequenced to provide year round heat to the IWH (combined boilers -this enables a sizing advantage for the boiler capacity required for the domestic hot water, as per ASHRAE)
- larger buildings or complexes where the hot water heating load is a smaller fraction of the available building heat load
- mechanical room space is at a premium, and the space savings of the IWH system are valued (today's mechanical square footage is estimated at between \$80/sqft, and \$110/sqft USD).

The following pages compare the first installed cost of IWH against the traditional storage tank domestic hot water approach for 5 cases. The cost comparison is for tank, boiler, and IWH equipment costs only, and do not allow for additional labor savings, saving in piping, or savings on valves that the IWH option offers.

The schematic drawing below illustrates the typical layout of the Domestic Hot Water circuit and the space heating circuit in the mechanical room for a 300 Unit Apartment Building. The actual size and configuration of the boilers will vary depending on the geographic location, the size of the apartment units, and any additional heating requirements in the complex other than just the rental units (example, lobbies, halls, recreation spaces, gyms, and other spaces)

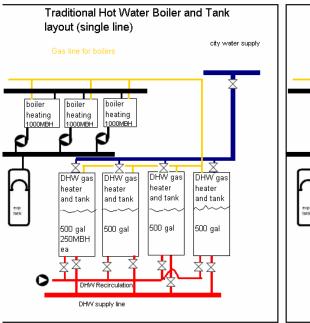
ASHRAE guidelines were used in the sizing of the boilers and storage tank configurations.

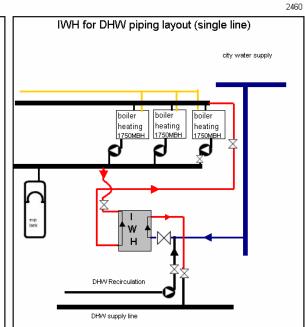
For the 300 Unit Apartment building mechanical room a comparison is made on the following table between the storage tank approach and the IWH approach.

The space savings using the IWH approach are 124 sqft, and combined with the equipment cost savings (boilers and IWH, versus boilers and storage tank) the total first cost advantage of IWH is \$13,623. The equipment unit prices are the best estimate of current costs that would be realized by the end user, after all mark ups through distribution, contractors, etc. The boiler and tank equipment market prices are "aggressively" low in favor of the storage tank option, and are not meant to imply or be representative of the actual prices paid for any specific make or models of boilers.

The annual operating cost savings are calculated for the storage tank approach as the sum of the radiant heat losses in the storage tank, and the electrical energy for the circulation pump from the boiler. The annual operating costs for the IWH are the sum of the PFX pressurizing pump that has an energy saving shut off after 10 minutes of no hot water demand. The annual operating savings in this case are \$1256 per year. This analysis does not allow for the additional labor savings that would be realized with the IWH option.

Case 1


Apartment, 300 Unit, located NE US / Central Ontario


	Storage Ta	nk Appro	bach	IWH Approa	ach			
Equipment	Base Case	base sqft	MBH(out)	IWH system	IWH sqft	MBH(out)	Price (\$USD)	
Heating boilers (2400MBH) Heating boilers (3200MBH) 83%	3	56.0 0.0	5940	0 3	0.0 71.8	0 7920	\$5,940.00 \$7,840.00	
Hot water boiler (2000MBH) DHW storage tanks (2100 gal)	1	8.1 180.0	1039.5		0.0 0.0		\$3,920.00 \$8,100.00	
IWH (70 gpm)		0.0		1	9.0		\$13,863.00 enhanced	
Storage tank circulator HP Circ motor efficiency Hours per day IWH PFx motor HP IWH PFx motor eff IWH PFX motor hrs per day Energy cost cent/kWhr totals	3 0.68 24 5 0.92 14 0.09	244.1	6979.5	target MBH out ins	80.8 stantaneous	7920 7880		
DHW boiler,tanks,IWH space cost for equipment	total equipmer space cost (so Annual tank h Tank re-circ a	∣ft) = eat loss \$	\$19,526.67 \$0.00	total equipmen space cost (sq Annual elec. P	ft) =	\$37,383.00 \$6,460.00 \$0.00 \$ 1,850.92	\$80.00	per sqft
Installed equipment cost 70gpr Annual operating cost (Installed equipment cost 80gp Boilers			\$ 57,466.67 \$ 3,107.73 \$ 57,466.67 \$ 21,740.00		63%	* - /	\$13,623.67 \$1,256.81 \$6,278.67	
tanks IWH		0%	\$ 16,200.00 \$ - \$ 37,940.00			\$ - \$ 13,863.00 \$ 37,383.00		

The second case considered is a 140 Unit apartment building in a warmer climate than Case 1. The mechanical room heating circuit components are sized as below. In the storage tank approach, 4 up-right tanks with integral gas fired burners are used.

Case 2 Apartment, 140 units, Southern US

A one-line schematic layout comparison between the traditional

DHW boiler and storage tank configuration to the new IWH system configuration.

Eliminate 4 hot water gas fired heater-tanks, eliminate 12 valves Increase heating boiler ratings from 3 \times 1000MBH to 3 \times 1500 MBH

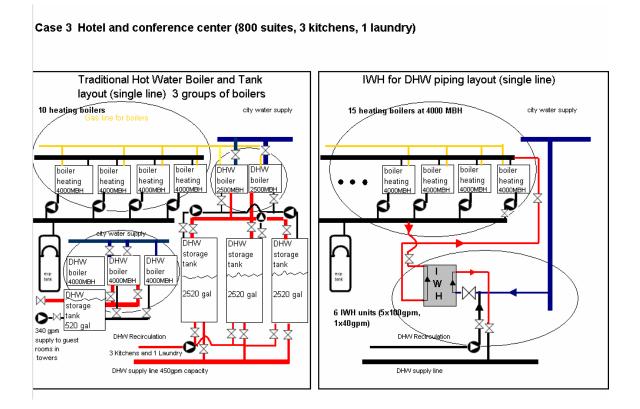
Add in one IWH unit (40 gpm)

Benefits - no heat loss on storage tanks, sharing of boilers, increase redundancy, gas lines all run to one area, no legionelle amplifier due to removal of storage tanks, easier installation, no recovery mode. The space savings using the IWH approach are 96 sqft, and the installed costs (boilers and IWH, versus boilers and storage tank) are estimated at over \$6000 less for the IWH. The unit prices are an estimate of the costs that would be realized by the end user, after all mark ups through distribution, contractors, etc.

This analysis does not allow for the additional labor savings that would be realized with the IWH option.

Case 2 Apartment, 140 units, Southern US

	Storage Tank Approach			IWH Approach			
Equipment	Base Case	base sqft	MBH(out)	IWH system	IWH sqft	MBH(out)	Price (\$USD)
Heating boilers (1000MBH) Heating boilers (1750MBH) 82%	3 eff	20.2 0.0	2467.5	0 3	0.0 23.1	0 3701.25	\$2,930.00 \$3,980.00
Hot water boiler (253MBH) with tank (500 gal)	4 0	108.0 0.0	832.37		0.0 0.0		\$2,402.00 \$0.00
IWH (40 gpm)		0.0		1	9.0		\$7,948.00
Storage tank circulator HP Circ motor efficiency Hours per day IWH PFx motor HP IWH PFx motor eff IWH PFX motor hrs per day Energy cost cent/kWhr	3 0.68 24 3 0.92 14 0.09						
		128.2	3299.87	target MBH out ins	32.1 stantaneous	3701.25 <i>4</i> 383.63	
DHW boiler,tanks,IWH space	total equipme space cost (se Annual tank h	qft) =	\$10,253.33	total equipmen space cost (sq Annual elec. P	ft) =	\$19,888.00 \$2,565.00 \$ 1,110.55	
	Tank re-circ a		\$ 2,575.73	Annual elec. F	ump nx=	φ 1,110.55	IWH Savings
Installed equipment cost Annual operating cost			\$ 28,651.33 \$ 3,107.73			\$ 22,453.00 \$ 1,110.55	\$6,198.33 22% \$1,997.18
Boilers tanks IWH		0% 0%			0% 40%	\$ 11,940.00 \$ - \$ 7,948.00 \$ 19,888.00	



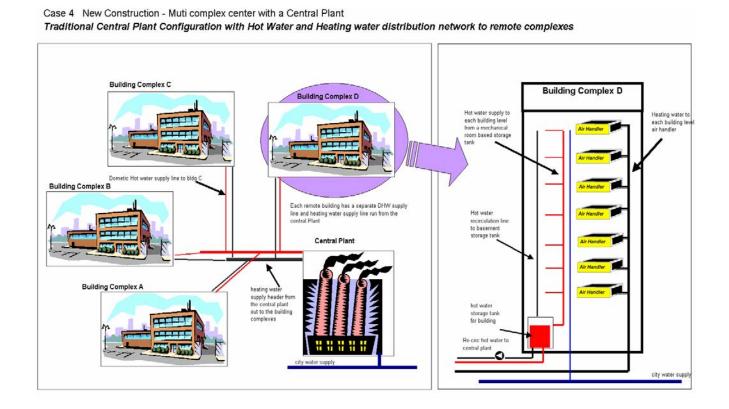
The third case considered is a large hotel and conference center as described below. A typical base case storage tank approach is represented in the schematic layout below, where the kitchens and laundry are on a separate domestic hot water circuit from the guest rooms.

With the IWH option, the guest room and kitchen/laundry circuits are combined as the instantaneous capacity of the IWH configuration is equal or greater to the anticipated maximum demand of all users. If the design requires a higher hot water temperature for the kitchen's and laundry, the output of 3 of the IWH units can be dedicated to those applications, with a higher temperature setpoint.

The 6 IWH units would be run in parallel with the Armstrong Master/Slave logic available on our Enhanced Controller. This logic sequences the operation of the IWH units for more refined temperature control during low demand periods.

Below is the cost an space analysis comparing the IWH option to the base case storage tank approach. The net equipment costs and space costs are actually higher for the IWH option. The reason for this higher cost has to do with the large variability in flow from the kitchen / laundry relative to the space heating load. For these large hot water heat demands the storage tank approach is typically less expensive than IWH. One major advantage to hotels, hospitals, and kitchens that IWH provides is the health and safety advantage of not increasing the risk of Legionelle.

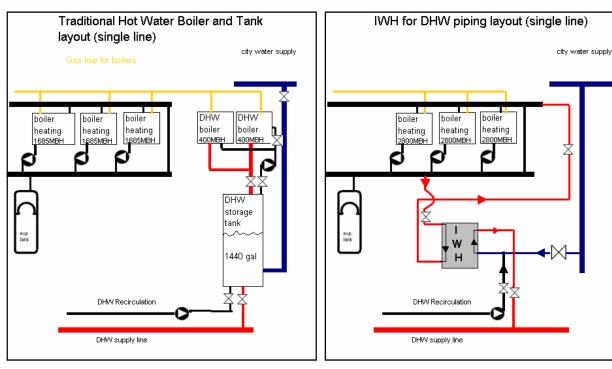
The energy savings resulting from the IWH approach provide a 3 year payback period on the initial cost differential.


Case 3 Hotel and conference center (800 suites, 3 kitchens, 1 laundry)

83%			IWH Approach					
Equipment	Base Case		MBH(out)	IWH system	IWH sqft		BH(out)	Price (\$USD)
Heating boilers (4000MBH)	10	291.7	33000	15	437.5	4	9500	\$ 8,050.00
DHW boilers (2500 MBH)	2	39.7	4125	0	0.0		0	\$6,286.00
DHW boilers (4000 MBH)	3	87.5	9900	0	0.0		0	\$8,460.00
DHW storage tanks (518 gal)	1	29.2			0.0			\$3,255.00
DHW storage tanks (2520 gal)	3	297.0						\$8,900.00
IWH (40 gpm) (58gpm@72F)				1	9.0			\$7,948.00
IWH 100 gpm (147gpm@72F)				5	45.0			\$17,672.00
Storage tank circulator HP	3							
Circ motor efficiency	0.68							
Hours per day	24							
IWH PFx motor HP	5							
IWH PFx motor eff	0.92							
IWH PFX motor hrs per day	6	time weight	ed avg.					
Energy cost cent/kWhr	0.09							
		745.0	47025		491.5	4	9500	
				target MBH out in:	stantaneous		59700	
DHW boiler,tanks,IWH	total equipme	nt cost=	\$148,407.00	total equipmen	it cost=	\$21	7,058.00	
space	space cost (s	qft) =	\$81,953.21	space cost (sq	ft) =	\$5	64,065.00	\$110.00 per sqft
	Annual tank h		. ,	Annual elec. P	ump Hx=	\$ 2	2,379.75	
	Tank re-circ a	annual elec	\$ 10,302.91					IWH Savings
Installed equipment cost			\$230,360.21				1,123.00	-\$40,762.79
Annual operating cost			\$ 16,154.91				2,379.75	\$13,775.16
						Payba		3.0 years
Boilers		80%	\$118,452.00		56%	\$120	0,750.00	
tanks			\$ 29,955.00		0%		-	
IWH		0%	\$ -		44%	\$96	6,308.00	
		100%	\$148,407.00		100%	\$217	7,058.00	

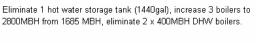
Page 7 of 12

The fourth case considered involves a central heating plant that services four district office complexes. Each office traditionally would have its own hot water storage tank fed hot water from the main plant, or heated with an immersion heater. The considered here is the scenario with insulated domestic hot water piping runs between the central plant and the office complexes (in close proximity, approximately 1000 ft).


	-		-					
					Heating Boiler an			
Central Pla	ant Heating Boi	ler Power = 50,0	000 MBH		Plant supply(input)) MBH (gas energy)	1
					Flow Max	1660) gpm	
					hallan avaah. T	245	-	
					boiler supply T boiler return T	24:		
boiler boiler		boiler	50 000 M		Boiler output) MBH	
heating heating 12,500MB 12500		heating = 12500MB	50,000 M		Heat loss piping) MBH	
12,500WB [12500			41,500 M	BHout	Complex Wtr T	240		
	Ø	Ø,	t 1660 gp	m	Complex Wtr T	200		
					sqft per complex	126000) sqft per complex	
		b	oiler flow	'	delivered heat		MBH to all complexes	
					heat per complex Heat requirement) MBH available 3 MBH per complex	
					Hot water Boilers			
) MBH	
Central	Plant Hot water	heating boiler p	ower = 1000 N	вн	Plant supply Flow Max) per complex	
					Number of staff) per complex, fixture units = 157.5	
		city water in			Hot Wtr enegy	250.0	MBH per complex	
boiler boil		city water in			Domestic Wtr T	60.0)F	
recirc 500MBH 500M					DHW T supply	130.0		
recifc 500MBH 500M	лын	= 1	000 MBH	in 🗍	Pipe temp drop	5.0		
	hot water				Tank size heat loss	1040.0) gal 3 BTU/hr	1
	complex t		30 MBHo	ui	heat loss Heat required		3 BTU/hr 3 MBH for 4 complexes	1
	2 Simplox i				Heat required Heat supplied		MBH for 4 complexes	1
					Heat required/bldg		MBH per complex	
	-				IWH BS flow		gpm from heating supply	4
Material costs between central	description	units (ft)	price/unit**	cost	Est cost installed	Totals	1	
plant and remote complexes	description	units (It)	price/unit***	COST	Est cost installed	Totals		
Traditional Hot water tanks (h	eat flow 1660 g	pm = 8" pipe, he	ot water piping	= 2" pipe)		\$ 111,155.20	Combined Boiler Sizi	ng Factor
							1	ratio is below 25%,
Heating water distribution piping	Insulated 8"						HWtr load to space heat	therefor no water heating
(underground	dia piping	1600	8.41	13456	\$ 21,529.60		load ratio	3% req'd
Hot water distribution piping	Insulated 2"						ASHRAE hot water load	
(underground)	copper piping	1600	16	25600	\$ 40,960.00		on combined boilr	0 MBH (1)
	Insulated 8"						Building heat system	
Heating water return pipes	dia piping	1600	8.41	13456	\$ 21,529.60		boiler load	41500 MBH (2)
	Insulated 2"						Total boiler demand for	
Hot water Recirc pipes	dia piping	1600	10.6		\$ 27,136.00		combo boilers	41500 MBH (1+2)
IWH Hot water circuits (total I		boiler for heatin	g and water =	1660 gpm)		\$ 43,059.20	boiler at 83% eff	50000 MBH
Heating water distribution piping (underground		1600	8.41	13456	\$ 21,529.60		12500 MBH units 4	
anderground	dia piping Insulated 8"	1000	0.41	10400	φ 21,023.00		12000 MD11 Units 4	
Heating water return pipes	dia piping	1600	8.41	13456				
				Savings with IV	VH on UG piping	\$ 68,096.00		
	Central Plan	nt with DHW I	Boilers	Central Plant	t with IWH at Bu	uildings	IWH Job multi	
83%	50,000MBH + 1	000 MBH		50,000 MBH			IWH Rep multi	
Equipment	Base Case	base sqft	MBH(out)	IWH system	IWH sqft	MBH(out)	Price (\$USD)	
Heating boilers (12500MBH)	4	361.1	41500	4	361.1	41500	\$ 25,156.25	
Heating boilers (15000MBH)	0	0.0	0	0	0.0	0	\$27,135.00	
DHW boilers (500 MBH)	2 0	6.3	830 0	0	0.0	0	\$2,200.00	
	0	0.0	0		0.0	0		
DHW storagetanks (1040 gal)	4	233.6	0		0.0	0	\$6,850.00	
CW inlet temp = 60 F								
IWH (40 gpm) (50gpm@60F)	I			4	36.0		\$7,948.00	1
Underground piping	l I			0			1	1
Insulated 8" dia piping	1600						\$8.41	1
Insulated 2" copper piping	1600			0			\$16.00	1
Insulated 8" dia piping	1600						\$8.41	
Insulated 2" dia piping	1600			4000			\$10.60	
Insulated 8" dia piping Insulated 8" dia piping	1			1600			\$8.41 \$8.41	
insulated of dia pipiling		600.0	40000	1600	397.1	44500	\$ 8.41	4
		600.9	42330	target MBH out insta		41500 41500		
DHW/ boiler topko IW/H	and a surface of the		¢ 400 405 00					1
DHW boiler,tanks,IWH space	total equipment			total equipment of space cost (sqft)		\$132,417.00 \$31,768.89		
intall piping and labour	space cost (sqf piping cost =			piping cost (sqrt)	-	\$43,059.20		
in teal piping and labour	Annual tank he	at loss \$		Annual elec. Pur	no Hx=	\$ 9,518.99	(10 hours operation)	
1		φ 6600.		, annual cicc. Pul		÷ 3,310.99	IWH Savings	
		nual elec	\$ 10.302.91					
Installed equipment cost	Tank re-circ an	nual elec	÷			\$ 207.245.09	\$84,409.33	t
Installed equipment cost Annual operating cost		nual elec	\$ 10,302.91 \$ 291,654.42 \$ 14,558.91			\$ 207,245.09 \$ 9,518.99		
Annual operating cost			\$ 291,654.42 \$ 14,558.91			\$ 9,518.99	\$84,409.33	
Annual operating cost Boilers		79%	\$ 291,654.42 \$ 14,558.91 \$ 105,025.00		76%	\$ 9,518.99 \$ 100,625.00	\$84,409.33	
Annual operating cost Boilers tanks		79% 21%	\$ 291,654.42 \$ 14,558.91 \$ 105,025.00 \$ 27,400.00		0%	\$ 9,518.99 \$ 100,625.00 \$ -	\$84,409.33	*
Annual operating cost Boilers		79% 21% 0%	\$ 291,654.42 \$ 14,558.91 \$ 105,025.00 \$ 27,400.00		0% 24%	\$ 9,518.99 \$ 100,625.00 \$ -	\$84,409.33	

Case 4 - Multi Office complex with central heating and Hot water Plant

The net savings of IWH over the storage tank approach is approximately \$84,000. The total boiler and tank, versus IWH and boiler equipment costs are very close in total, however the savings in piping costs, and space costs make the \$84,000 advantage for IWH.



Case 5 Hotel, 180 suites, 10 story, 20 suites per floor, main floor lobby and meeting rooms

A one-line schematic layout comparison between the traditional *Multiple boilers used for sequencing and redundancy on heating

DHW boiler and storage tank configuration to the new IWH system configuration.

Add in one IWH unit (70 gpm)

Benefits - no heat losse on storage tanks, sharing of boilers, increase redundancy, gas lines all run to one area, no legionelle amplifier due to removal of storage tanks, easier installation, no recovery mode.

Case 5

Hotel, 180 suites, 10 story, 20 suites per floor, main floor lobby and meeting rooms

heating req'd	= 66	btu/sqft =	4950	MBH	DHW req'd	70	gpm Max
DHW temp = 140 deg F bity water temp = 55 deg F	Storage T	ank Appro	bach	IWH Appro	ach		all prices are estimates of end customer price
Equipment	Base Case	base sqft	MBH(out)	IWH system	IWH sqft	MBH(out)	Price (\$USD) list
boiler eff =		2000 0411		····· oyotom			
Heating boilers (1685MBH) 83x25"	3	43.2	4157.7375	0	0.0	0	\$3,970.00
Heating boilers (2800 MBH) 73"x42"				3	63.9	6909	\$6,540.00
Hot water boiler (400MBH) 55.5 x 25"	2	19.3	658	-	0.0		\$2,400.00
vith tank (1440 gal) 48x192"	1	64.0	1440		0.0		\$5,830.00
	6 eff						. ,
WH (70 gpm)		0.0		1	9.0		\$12,712.00
Storage tank circulator HP	3						
Circ motor efficiency	0.68						
Hours per day	24						
WH PFx motor HP	3						
WH PFx motor eff	0.92						
WH PFX motor hrs per day	8						
Energy cost cent/kWhr	0.09						
otal installed cost ignoring savings		126.5	6255.7375		72.9	6909	
on installation, piping, gas lines,							
ranes,footings etc							
DHW boiler,tanks,IWH	total equipm			total equipment		\$32,332.00	
space	space cost (sqft) =	\$10,120.00	space cost (so	qft) =	\$5,830.00	\$80.00 per sqft
	Annual tank	heat loss \$	\$ 1,330.00	Annual elec. F	ump Hx=	\$ 634.60	
	Tank re-circ	annual elec	\$ 2,575.73				IWH Savings
nstalled equipment cost			\$ 32,660.00			\$38,162.00	-\$5,502.00 -17
Annual operating cost			\$ 3,905.73			\$ 634.60	\$3,271.13
					payback pe		1.68 yrs
Boilers			\$ 16,710.00			\$19,620.00	
anks			\$ 5,830.00		0%	*	
WH		0%				\$12,712.00	
		100%	\$ 22,540.00		100%	\$32,332.00	

ASHRAE Published Fixture Unit Data

Hot Water Demand in Fixture Units (Instantaneous)

Unit	Apartments	Hospitals	Hotels / Dorms	Office Bldg.	Schools
Lavatories	0.75	1	1	1	1
Bathtubs	1.5	1.5	1.5	-	-
Dishwashers	1.5	5 per 250 seats	5 per 250 seats	-	-
Therapeutic bath	-	5	-	-	-
Kitchen sink	0.75	3	1.5	1.5	3
Slop sink	1.5	2.5	2.5	2.5	2.5
Showers	1.5	1.5	1.5	-	1.5

Hot Water Demand in Gallons / hr (Storage)

Unit	Apartments	Hospitals	Hotels / Dorms	Office Bldg.	Schools
Lavatories	2	6	8	6	15
Bathtubs	20	20	20	-	-
Dishwashers	15	50	50	-	20
Therapeutic bath	-	400	-	-	-
Kitchen sink	10	20	30	20	20
Slop sink	20	20	30	20	20
Showers	30	75	75	30	225
Demand Factor	0.3	0.25	0.25	0.3	0.4
Storage Capacity	1.25	0.6	0.8	2	1

Preliminary Hot Water Demand Estimate (Instantaneous)

Type of Building	Unit	Fixture Units per unit
Hospital or nursing home	Bed	2.5
Hotel or motel	Room	2.5
Office building	Person	0.15
Elementary school	Student	0.3*
Jr. and sr. high school	Student	0.3*
Apartment house	Apartment	3

Hot Water Utilization Temperatures

Use	Temp. (F)
Hand washing	105
Shaving	115
Showers & tubs	110
Therapeutic baths	110
Dishwashing	140
Comm. laundry	180
Resident. laundry	140
Surgical scrubbing	110

S. A. Armstrong Limited 23 Bertrand Avenue Toronto, Ontario Canada, M1L 2P3 **T**: (416) 755-2291 **F** (Main): (416) 759-9101 Armstrong Pumps Inc. 93 East Avenue North Tonawanda, New York U.S.A. 14120-6594 T: (716) 693-8813 F: (716) 693-8970

Armstrong Holden Brooke Pullen Wenlock Way Manchester United Kingdom, M12 5JL T: +44 (0) 161 223 2223 F: +44 (0) 161 220 9660

For Armstrong locations worldwide, please visit www.armstrongpumps.com